149 research outputs found

    Lipoxygenase in wheat: Genetic control and impact on stability of lutein and lutein esters

    Get PDF
    Published: 20 May 2021Preservation of lutein concentrations in wheat-based end-products during processing is important both for product quality and nutritional value. A key constituent involved in lutein degradation is endogenous lipoxygenase. Lutein and lutein ester concentrations were compared at intervals during storage of noodle sheets prepared from flour of wheat varieties representing a range in lipoxygenase activity, as well as in different mill streams and in different grain tissues. Higher lipoxygenase concentration was associated with an increased loss of free lutein and lutein mono-esters whereas lutein diesters appeared to be more resistant to degradation. Lutein degradation was reduced in the presence of a lipoxygenase inhibitor, when noodle sheets were heated to destroy enzyme activity or when pH was increased. In addition, three populations were used to investigate the genetic control of lipoxygenase. A previously reported mutation of Lpx-B1.1 was associated with a reduction in activity from high to intermediate whilst a new locus on chromosome 4D was associated with variation between intermediate and near-zero. The gene underlying the 4D locus is a putative lipoxygenase. Stability of lutein could be improved by deployment of the mutations at the 4B and 4D loci and/or by post-harvest storage of grain under conditions that promote esterification.Daryl J. Mares, Judy Cheong, Shashi N. Goonetilleke and Diane E. Mathe

    The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations

    Get PDF
    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. PIXIE will map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 um wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10^{-3} at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy.Comment: 37 pages including 17 figures. Submitted to the Journal of Cosmology and Astroparticle Physic

    Photon-axion conversion in intergalactic magnetic fields and cosmological consequences

    Get PDF
    Photon-axion conversion induced by intergalactic magnetic fields causes an apparent dimming of distant sources, notably of cosmic standard candles such as supernovae of type Ia (SNe Ia). We review the impact of this mechanism on the luminosity-redshift relation of SNe Ia, on the dispersion of quasar spectra, and on the spectrum of the cosmic microwave background. The original idea of explaining the apparent dimming of distant SNe Ia without cosmic acceleration is strongly constrained by these arguments. However, the cosmic equation of state extracted from the SN Ia luminosity-redshift relation remains sensitive to this mechanism. For example, it can mimic phantom energy.Comment: (14 pages, 9 eps figures) Contribution to appear in a volume of Lecture Notes in Physics (Springer-Verlag) on Axion

    Antimatter from the cosmological baryogenesis and the anisotropies and polarization of the CMB radiation

    Full text link
    We discuss the hypotheses that cosmological baryon asymmetry and entropy were produced in the early Universe by phase transition of the scalar fields in the framework of spontaneous baryogenesis scenario. We show that annihilation of the matter-antimatter clouds during the cosmological hydrogen recombination could distort of the CMB anisotropies and polarization by delay of the recombination. After recombination the annihilation of the antibaryonic clouds (ABC) and baryonic matter can produce peak-like reionization at the high redshifts before formation of quasars and early galaxy formation. We discuss the constraints on the parameters of spontaneous baryogenesis scenario by the recent WMAP CMB anisotropy and polarization data and on possible manifestation of the antimatter clouds in the upcoming PLANCK data.Comment: PRD in press with minor change

    Planck-LFI: Design and Performance of the 4 Kelvin Reference Load Unit

    Get PDF
    The LFI radiometers use a pseudo-correlation design where the signal from the sky is continuously compared with a stable reference signal, provided by a cryogenic reference load system. The reference unit is composed by small pyramidal horns, one for each radiometer, 22 in total, facing small absorbing targets, made of a commercial resin ECCOSORB CR (TM), cooled to approximately 4.5 K. Horns and targets are separated by a small gap to allow thermal decoupling. Target and horn design is optimized for each of the LFI bands, centered at 70, 44 and 30 GHz. Pyramidal horns are either machined inside the radiometer 20K module or connected via external electro-formed bended waveguides. The requirement of high stability of the reference signal imposed a careful design for the radiometric and thermal properties of the loads. Materials used for the manufacturing have been characterized for thermal, RF and mechanical properties. We describe in this paper the design and the performance of the reference system.Comment: This is an author-created, un-copyedited version of an article accepted for publication in JINST. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at [10.1088/1748-0221/4/12/T12006]. 14 pages, 34 figure

    Cosmology at the Millennium

    Get PDF
    One hundred years ago we did not know how stars generate energy, the age of the Universe was thought to be only millions of years, and our Milky Way galaxy was the only galaxy known. Today, we know that we live in an evolving and expanding Universe comprising billions of galaxies, all held together by dark matter. With the hot big-bang model, we can trace the evolution of the Universe from the hot soup of quarks and leptons that existed a fraction of a second after the beginning to the formation of galaxies a few billion years later, and finally to the Universe we see today 13 billion years after the big bang, with its clusters of galaxies, superclusters, voids, and great walls. The attractive force of gravity acting on tiny primeval inhomogeneities in the distribution of matter gave rise to all the structure seen today. A paradigm based upon deep connections between cosmology and elementary particle physics -- inflation + cold dark matter -- holds the promise of extending our understanding to an even more fundamental level and much earlier times, as well as shedding light on the unification of the forces and particles of nature. As we enter the 21st century, a flood of observations is testing this paradigm.Comment: 44 pages LaTeX with 14 eps figures. To be published in the Centennial Volume of Reviews of Modern Physic

    Genomic adaptations of Campylobacter jejuni to long-term human colonization

    Get PDF
    Background Campylobacter is a genus of bacteria that has been isolated from the gastrointestinal tract of humans and animals, and the environments they inhabit around the world. Campylobacter adapt to new environments by changes in their gene content and expression, but little is known about how they adapt to long-term human colonization. In this study, the genomes of 31 isolates from a New Zealand patient and 22 isolates from a United Kingdom patient belonging to Campylobacter jejuni sequence type 45 (ST45) were compared with 209 ST45 genomes from other sources to identify the mechanisms by which Campylobacter adapts to long-term human colonization. In addition, the New Zealand patient had their microbiota investigated using 16S rRNA metabarcoding, and their level of inflammation and immunosuppression analyzed using biochemical tests, to determine how Campylobacter adapts to a changing gastrointestinal tract. Results There was some evidence that long-term colonization led to genome degradation, but more evidence that Campylobacter adapted through the accumulation of non-synonymous single nucleotide polymorphisms (SNPs) and frameshifts in genes involved in cell motility, signal transduction and the major outer membrane protein (MOMP). The New Zealand patient also displayed considerable variation in their microbiome, inflammation and immunosuppression over five months, and the Campylobacter collected from this patient could be divided into two subpopulations, the proportion of which correlated with the amount of gastrointestinal inflammation. Conclusions This study demonstrates how genomics, phylogenetics, 16S rRNA metabarcoding and biochemical markers can provide insight into how Campylobacter adapts to changing environments within human hosts. This study also demonstrates that long-term human colonization selects for changes in Campylobacter genes involved in cell motility, signal transduction and the MOMP; and that genetically distinct subpopulations of Campylobacter evolve to adapt to the changing gastrointestinal environment

    Prospects for Constraining Cosmology with the Extragalactic Cosmic Microwave Background Temperature

    Get PDF
    Observers have demonstrated that it is now feasible to measure the cosmic microwave background (CMB) temperature at high redshifts. We explore the possible constraints on cosmology which might ultimately be derived from such measurements. Besides providing a consistency check on standard and alternative cosmologies, possibilities include: constraints on the inhomogeneity and anisotropy of the universe at intermediate redshift z∼<10z ^<_\sim 10; an independent probe of peculiar motions with respect to the Hubble flow; and constraining the epoch of reionization. We argue that the best possibility is as a probe of peculiar motions. We show, however, that the current measurement uncertainty (ΔT=±0.002\Delta T= \pm 0.002 K) in the local present absolute CMB temperature imposes intrinsic limits on the use of such CMB temperature measurements as a cosmological probe. At best, anisotropies at intermediate redshift could only be constrained at a level of ∼>0.1^>_\sim 0.1% and peculiar motions could only be determined to an uncertainty of ∼>311^>_\sim 311 km s−1^{-1}. If the high zz CMB temperature can only be measured with a precision comparable to the uncertainty of the local interstellar CMB temperature, then peculiar motions could be determined to an uncertainty of 1101(1+z)−1[ΔTCMB(z)/0.01K]kms−11101 (1+z)^{-1} [\Delta T_{CMB}(z)/0.01 K] km s^{-1}.Comment: 8 pages 2 Figures, PRD Submitte

    The impact of COVID-19 critical illness on new disability, functional outcomes and return to work at 6 months: a prospective cohort study

    Get PDF
    Background: There are few reports of new functional impairment following critical illness from COVID-19. We aimed to describe the incidence of death or new disability, functional impairment and changes in health-related quality of life of patients after COVID-19 critical illness at 6 months. Methods: In a nationally representative, multicenter, prospective cohort study of COVID-19 critical illness, we determined the prevalence of death or new disability at 6 months, the primary outcome. We measured mortality, new disability and return to work with changes in the World Health Organization Disability Assessment Schedule 2.0 12L (WHODAS) and health status with the EQ5D-5LTM. Results: Of 274 eligible patients, 212 were enrolled from 30 hospitals. The median age was 61 (51–70) years, and 124 (58.5%) patients were male. At 6 months, 43/160 (26.9%) patients died and 42/108 (38.9%) responding survivors reported new disability. Compared to pre-illness, the WHODAS percentage score worsened (mean difference (MD), 10.40% [95% CI 7.06–13.77]; p < 0.001). Thirteen (11.4%) survivors had not returned to work due to poor health. There was a decrease in the EQ-5D-5LTM utility score (MD, − 0.19 [− 0.28 to − 0.10]; p < 0.001). At 6 months, 82 of 115 (71.3%) patients reported persistent symptoms. The independent predictors of death or new disability were higher severity of illness and increased frailty. Conclusions: At six months after COVID-19 critical illness, death and new disability was substantial. Over a third of survivors had new disability, which was widespread across all areas of functioning.Carol L. Hodgson, Alisa M. Higgins, Michael J. Bailey, Anne M. Mather, Lisa Beach, Rinaldo Bellomo, Bernie Bissett, Ianthe J. Boden, Scott Bradley, Aidan Burrell, D. James Cooper, Bentley J. Fulcher, Kimberley J. Haines, Jack Hopkins, Alice Y. M. Jones, Stuart Lane, Drew Lawrence, Lisa van der Lee, Jennifer Liacos, Natalie J. Linke, Lonni Marques Gomes, Marc Nickels, George Ntoumenopoulos, Paul S. Myles, Shane Patman, Michelle Paton, Gemma Pound, Sumeet Rai, Alana Rix, Thomas C. Rollinson, Janani Sivasuthan, Claire J. Tipping, Peter Thomas, Tony Trapani, Andrew A. Udy, Christina Whitehead, Isabelle T. Hodgson, Shannah Anderson, Ary Serpa Neto, and The COVID-Recovery Study Investigators and the ANZICS Clinical Trials Grou
    • …
    corecore